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AQUARIUS-relevant aerosol questions

* How do organic and inorganic components contribute to wintertime PM?
Organics NHx, NOx, Cl

 What is the size-dependence of composition?

* What chemistry is controlling PM mass and composition, and how does this vary
with meteorology?

 How accurate are emissions inventories (traffic, agriculture, VCPs, etc)?

« How does deposition affect gas and particle fate —and thus chemistry?



Observational constraints on atmospheric chemical processes

Aircraft platform

Ground sites

* Detailed chemical analysis

* Longer-term measurements

* Temporal variability

* Flux measurements: emission & deposition
* Single point locations

Chemical processes, emissions

(Slightly less) detailed chemical analysis
Fast time-resolution measurements
Spatial & vertical gradients

Multiple locations

Example of ground-based flux measurements Example of using bulk aerosol measurements
to think about particle dry deposition to study emissions & chemistry
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Investigating dry deposition by size-resolved particle & black carbon
flux measurements (eddy covariance + UHSAS, SP2)

Manitou Forest, CO (NOAA)
4 seasons, 2015
*array of turbulence conditions

Southern Great Plains, OK (DOE)
6 weeks, 2016
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Sophisticated deposition models capture the observations (but
widely used simpler ones generally do not)
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Sophisticated deposition models capture the observations (but

widely used simpler ones generally do not)

Zhang 2001 (model)
Petroff 2010 (model)

open symbols considered in
Petroff 2010 model update

Lorenz 1989 (pine)
Beswick 1991 (spruce)
Lamaud 1994 (pine)
Gallager 1997 (fir)
Buzorius 2000 (pine)
Gaman 2004 (pine)
Vong 2007 (pine)
Gronholm 2009 (pine)
Deventer 2015 (spruce)
Petroff 2018 (broadleaf)
our data (pine forest)
our data (plains)
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Standard vs revised parameterizations for dry deposition impact
(size-resolved) particle lifetime
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Revised particle dry deposition parameterizations have a
substantial effect on modeled aerosols + radiative effects

% changes at 1000 hPa
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We can use flux observations to constrain model
parameterizations of sources & sinks

Particularly large particle deposition uncertainties over
cryosphere & water

Remote / receptor sites offer an opportunity to investigate
particle fate — and other impacts of deposition on C,N cycles —
using flux measurements

In contrast, urban & agricultural sites offer opportunity to study
source emissions by direct flux measurements (VCPs, BC, NH,)
— few urban flux sites/measurements in the US
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The Western Wildfire Experiment for Cloud Chemistry, Aerosol
Absorption & Nitrogen
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Sub-micron aerosol in wildfire
smoke is overwhelmingly organic

AMS provides bulk sub-micron
measurements and some useful
markers for specific molecules,
along with factor analysis for
characteristic components

[Garofalo et al. ACS Earth & Space Chemistry. 2019]
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We can calculate emissions ratios, accounting for simple dilution,
and find that organic aerosol emissions are relatively consistent
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[Garofalo et al. ACS Earth & Space Chemistry. 2019]



Does the fire plume chemically evolve in the near-
field?

Source



Does the fire plume chemically evolve in the near-

field?
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OA changes: oxidation & dilution-driven evaporation balance!
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What happens on longer timescales and in polluted environments?
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What else would have been useful for this type of work?

e Size distribution measurements are not trivial

* Organic aerosol molecular speciation can compliment bulk
aerosol composition

* Refractory inorganic ions provide additional information

e Understanding of volatility (PMF can only get you so far,
although thermal denuders have time resolution challenges)

* AMS only measures the non-refractory component of PM ¢ g0
— what about the rest of the aerosol?



Observational constraints on emission and deposition terms are
useful —and provide insight on chemistry
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Dry deposition is an important — but poorly characterized — loss process
for sub-micron particles

Flux measurements provide insight on both sources and sinks of trace
gases and particles

Organic aerosol is complex: chemical tracers are useful for separating
out processes
*But it’s important to recognize measurement limitations
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