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Outline:

The Importance of Measuring Entrainment Mixing and Horizontal Advection (both rarely
measured at supersite experiments). This involves highly focused flight planning for spending a
lot of time in the same region upwind of the ground site (for budgeting.)

The utility of flight strategies that permit scalar budgeting (yielding emissions, heat fluxes, drag,
entrainment mixing, advection, and subsidence on the "basin" or meso-scale.)

Mixing in complex terrain often involves a larger role of mean subsidence, an atmospheric
parameter, despite being a wind (the principal meteorological observable) that is not very often
measured. My group is pioneering 2 separate ways to measure this critical parameter by
aircraft: 1) budgeting z; (solving for W), and 2) direct measure via Precise Point Positioning GPS
technology and gust probe.

This type of budgeting can also be used to empirically measure the mixing rates, K,, of stable
atmospheric layers as was done in the overnight study by Caputi et al. (2019)

The potential importance of agricultural soil NO, on wintertime PM2.5 (e.g from M. Kleeman)



Scalar Budgets in a Turbulent Atmospheric Boundary Layer (ABL):
A Mixed-Layer Model
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Figure 11.1 Sketches of profiles of mean quantities and their vertical fluxes in the
CBL, with its layers, heights, and parameters indicated. Left pair: Virtual potential
temperature and 1ts fiux. Right pair: A conserved scalar and its flux. From Deardorti
(1979). source: Wyngaard[2005]
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Entrainment velocities are estimated during the midday flights by measuring the growth rate and
advection of z, but require a (WRF) model estimate of mean vertical wind, W, which can be a leading

term in complex terrain.
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Classical daytime valley-mountain circulation creates horizontal divergence
inducing subsidence over the valley
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(Mean) Vertical Motion at ABL top in the SJV:
winter values are likely an order of magnitude smaller
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Relative importance of afternoon entrainment to dominant term of
each scalar budget
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Aircraft budgeting used to quantity mixing rates, K, in
stable nighttime conditions
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Figure 6. O, profiles from 4 June 2016 overnight analysis, NBL height (green line), and lower bound to vertical mixing gradient (yellow
line). The solid lines are observations and the dashed lines are calculated based on expected changes due to horizontal advection (blue),
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Focusing on our work in more stable conditions we have experience from DISCOVER-AQ
and nocturnal boundary layers in the summertime
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Looking for synoptic conditions that promote the LLJ and
thus enhance overnight removal of O,
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Results of wintertime PM modeling by M. Kleeman

NOy Trends in January at Fresno, Bakersfield, and Visalia

B Measurements of NO+NO,+particulate nitrate

using monthly model results

Il Predictions with candidate soil NOx emissions
of Almaraz et al. (2018)

B Predictions without candidate soil NOx emissions
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Charge from steering committee: critical needs for future aircraft/ground
study focused on wintertime air quality in Western mountain basins

Critical Observations:

Careful measurement of (mesoscale horizontal) advection. Perfect for small
aircraft.

Measurement of boundary layer height budget (including entrainment and
subsidence and growth rates). Also perfect for small aircraft.

Measurements of regional fluxes to connect point precision of a tower to regional
averages (key to forcing of regional models)

Mixing rates in stable layers (can be done with careful budgeting techniques in
large or small aircraft, but low altitudes of interest may favor small aircraft.)

Soil NO, emissions (maximum likely in midday high T, but still possibly significant in
winter)



Surface Shortwave Downwelling Radation & ABL Heights

SIRTA Observatory near Paris
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