Changing emissions of greenhouse
gases and chemically reactive
pollutants: implications for urban
atmospheric composition

John Chun-Han Lin ( )

Ryan Bares
Logan Mitchell
Ben Fasoli

Department of
ATMOSPHERIC SCIENCES
% MINES AND EARTH SCIENCES | THE UNIVERSITY OF UTAH



mailto:John.Lin@utah.edu

Climate Change

|

Air Quality N

IGreenhouse Gas emissions (CO,, CH,) </k
Pollutant emissions (e.g., NO,, CO, PM, VOCs)




PBL Height

| S

Ll

Emissions
from power
plants (often
outside cities)
that generate

S gt TR

consumed by Respiration, volatile
cities chemical products

Biogenic VOCs

Modified from Lin et al. (BAMS, 2018)



Emission Estimation in Inventories

“The general equation for emissions estimation is:
E=AXxEF x (1-ER/100)

where:
* E = emissions;

a .. _ related to energy usage (fossil fuel
* A = activity rate; combustion!); constrained with GHG data

* EF = emission factor;
constrained with pollutant:GHG ratio obs

* ER =overall emission reduction efficiency, %”

https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-

and-quantification



https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification

Urban Atmospheric Composition is Changing
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Fig. 1. Air quality trends in the Los Angeles urban area of California. As per national
standards, the O3 data (8-h average) are 3-yr averages of the 4th highest annual
maxima, the CO data (8-h average) are annual maxima, the NO, data are annual
averages, and the PM, 5 data (24-h average) are annual 98th percentiles. Data are
derived from monitoring stations in the SoCAB region (Alexis et al., 1999; Cox et al.,
2009; http://www.arb.ca.gov/adam/cgi-bin/db2www /polltrendsb.d2w/Branch).

Parrish, D. D., H. B. Singh, L. Molina, and S. Madronich, 2011: Air quality progress in North American megacities:
A review. Atmos. Environ., 45, 7015-7025, doi:https://doi.org/10.1016/j.atmosenv.2011.09.039.



Pronounced spatial variations even within
the Western U.S.: will we see with aircraft?

-130 -120 -110 -100 -90 -80 -T0 -60 -130 -120 -110 -100 90 80 70 -60
2w T T g
NO, / CO, Ratio 20055,2 NO,/ CO, Ratio 2017‘%}
US Avg: 1.9x 107, US PP Avg: 04x 10
= 5 = r ; &
= 5 ¥ 3
2 8 & a
= g 2 g
| . 4 M| Y .I.-I!! %-‘ b
+ Large & Isolated Power Plant + Large & Isolated Power Plant
8 s B f«:‘:\%:,; =
I B BT B
0.5 1 2 3 10 0.5 1 2 3 5 10

NOx-to-CO, emission ratios (inferred from emission inventories) have decreased by
~40% nationwide between 2006 to 2017

Catalytic converters: =
NOx => NH,? 4
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U.S. fuel mixture—changes over years

U.S. energy consumption by source and primary energy consumption (1950-2018)
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Time Series of U.S. Per capita ON-ROAD
CO, Emissions by County
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(Gately et al., 2015)



“Demand” for Localized GHG Emission Information

49% of the
300 most

populated
cities in

LEGEND

CONUS
have (O Cities that have GHG
emission reduction pledges'’
reduction ﬂ Regional/State
t t emission trading
argets rograms in U.S

tates with Climate

Action Plans?

'NAZCA (2017)

2https://www.c2es.org/docum Urban Areas?
ent/climate-action-plans/

2US Census 2013

(from Kim Mueller)



“Our city. . . is committed to powering 50% of municipal
operations with renewables by 2020. We have set another goal
of transitioning the entire community's electricity supply to 100

percent clean energy by 2032, followed by an overall reduction
of community greenhouse gas emissions 80% by 2040. .
--Jackie Biskupski, mayor of Salt Lake City 4
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Continental Network + Expanding Urban In-situ Sites
2016

Data Expansion

Continental Network * Expanding Urban In-Situ Sites n § " _
2016 " =

San Francisco®

LA Megacities
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Boston
INFLUX

Salt Lake City

San Francisco
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Los Angeles
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(from Kim Mueller)



02 Urhan Synthesis and Analysis Network COZ-USA Project We bsite

Workshops Working Groups Inventory Urban Biosphere Atmospheric Transport Modeling Resources for Cities Q

“C0O2-USA” Network http://sites.bu.edu/co2usa

Principal Investigators: John Lin, Lucy Hutyra, Steven Wofsy, Christopher Loughner

Project Summary Next workshop in Boston: Oct. 7th~8th, 2019

Cities have emerged as leaders in US efforts to reduce greenhouse gas emissions, but the scientific knowledge to quantitatively track emissions and

assess the efficacy of mitigation is lacking. As the global population increasingly resides in urban regions, scientific knowledge about how much, where,
and why a particular city emits carbon becomes increasingly important. This workshop launches a collaborative network to exchange information on
community standards and common measurements, facilitate data sharing, and create analysis frameworks and cross-city syntheses to catalyze a new
generation of researchers and enable new collaborations tackling important objectives that are difficult to address in isolation. Specifically this synthesis

effort seeks to:

» Quantify & understand similarities/differences in CO, and CH, fluxes across T2 TR l-m Atmospheric
. MORY 0 Modllngsvscem
cities; IAtmospheric CO, & 2
CH, dataset X
¢ Develop harmonized CO, and CH, mixing ratio datasets that are readily 3T Bospheric & Anthropogenic |

lnventorles
useable, traceable, and accessible by the research community and the public; v

¢ Construct an atmospheric modeling system that is scalable and transferable - - ) _

between cities;

e Compare & understand similarities/differences between anthropogenic
emission inventories;

¢ |Improve estimates of biospheric fluxes across cities;

[5] Inverse Estimates of,

¢ Foster a community of urban carbon cycle researchers and generate
carbon emissions

collaborative studies;
« Engage stakeholders to link them with data, syntheses, and insights into urban

emissions.

Supported through NOAA AC4 with workshop support from NIST


http://bu.edu/co2usa

Salt Lake Area Greenhouse Gas Monitoring System
https://air.utah.edu/; Lin et al., BAMS, Nov. 2018.
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https://air.utah.edu/

CO, (ppm)
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Long-term urban carbon dioxide observations reveal
spatial and temporal dynamics related to urban
characteristics and growth
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and James R. Ehleringer®
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84112; “Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195; 9National Center for Atmospheric Research, Boulder,
CO 80307; *Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, HI 96822; and fSchool of Life Sciences, Arizona State
University, Tempe, AZ 85287




Excess CO, (ppm)

Trends vary
across the
urban area!

Latitude

J, Long-term trends resulits
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(Mitchell et al., 2018)
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Trends vary
across the
urban area!

J, Long-term trends resulits

(Mitchell et al., 2018)
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40.9

SLC CO, Long-term trends results

Trends vary
across the
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CO:CO, Trends over Multiple Years in
different seasons
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Close Relationship between CO, & PM, . (daily)

(Years: 2003~2013)
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VHD is measure of atmospheric stability (Whiteman et al., 2014)

int= =165 slope= 0.434

The Wintertime Covariation of CO, and Criteria Pollutants 2= 057

in an Urban Valley of the Western United States 01
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TRAX Monitoring of Air Quality and
Greenhouse Gases in the Salt Lake Valley
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Monitoring of greenhouse gases and pollutants across an urban area usinga M)

light-rail public transit platform St
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*NO, and O; are
related through
atmospheric
photochemistry.

* Strong correlation
(r = -0.96)

* [llustrates the
complex signature
of fossil fuel
combustion on
urban atmospheric
composition and air
quality.
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Key Questions

Overall question: How are urban GHG emissions changing in
the western U.S., which sectors are responsible for the
changes, and how are shifts in GHG emissions associated
with changes in short-lived pollutants?

 How should aircraft and other datasets (e.g., surface stations) be combined
to constrain GHG emissions and source attribution?

« Changes in mobile sector (cleaner cars) leading to both reduced GHG and
chemically-active pollutant emissions?

« Changes in CO, and CH, composition due to decarbonization efforts and
switch from one fossil fuel (coal, petroleum) to another (natural gas)

« What kind of role, if any, does the urban biosphere play as sources and sinks
of both GHG and short-lived pollutants (and their precursors)?

« What kind of “co-benefits” can be realized in terms of climate mitigation and
improved air quality?

« Key climate “penalties” for air quality
» Potential scenarios for things to “backfire?
 Insights for policy measures or measures under discussion by policymakers
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Salt Lake City Google Street View-based Air
Quallty Sampling (since Aprll 2019)
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EX : New York City 1t Chicago . Los Angeles
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NOx-to-CO2 emission ratios have decreased by ~40% nationwide between 2006 to 2017
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Light Rail-based CO, Observations

(Lin et al., BAMS, 2018)




Light Rail-based PM, . Observations

Fig. 8. PM, 5 averaged over the summer of 2016 (May through September). The ‘G’, ‘K, and ‘X’ indicate the locations of the gravel pit shown in Fig. 7a, the brick
factory shown in Fig. 5 and 6, and an unidentified PM, 5 source, respectively.

(Mitchell et al., Atmospheric Environment, 2018)



“If you can't measure it, you can't improve it.”
- Peter Drucker

Salt Lake Valley
CO, Observational
Network—(among?

the longest- |

running urban CO, \

networks in the
world)
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