Reduced Nitrogen in the Western US in Winter

Jennifer Murphy University of Toronto

Sensitivity of PM_{2.5} to NH₃

For dry particles, the presence of excess NH_3 allows semi-volatile salts to form, e.g. NH_4NO_3

For deliquesced particles (and liquid water clouds), NH_3 controls the pH of PM_{2.5}

- partitioning of semi-volatile gases, e.g. HNO₃, HCl, oxalic acid

- rates of some aqueous phase reactions

NH₃ can also react with particle phase carbonyls to generate brown (light-absorbing) constituents

Deliquesced NH₄NO₃ is limited by NH₃ and NO_x

aircraft AMS, CIMS and QCL data from UWFPS 2017 in Utah

Franchin et al., Atmos Chem Phys, 2018

Sources of NH₃

Livestock

Fertilizer application

Residential wood combustion

Biomass burning

Mobile sources

Industry

Bidirectional exchange

CalNex implied livestock NH₃ sources were significantly underestimated

Schiferl et al., JGR, 2014

Satellite, Aircraft and Ground-based in DISCOVER-AQ

Sun et al., *JGR*, 2015

Spatial distribution of NH₃ in UWFPS

Moravek et al., ACPD, 2019

Constraining the NH₃ inventory

Moravek et al., ACPD, 2019

Underestimate of NH₃ emissions in Utah

Wintertime emissions from animal husbandry 4x too low in 2014 UDAQ inventory

Large seasonality for livestock NH₃ emissions in UDAQ inventory

Seasonal cycle imposed on annual emissions Cycle was inferred through inverse modelling in Gilliland et al., 2006

CAFO survey in Colorado showed modest seasonality

Figure 6. Temperature dependence of the $\Delta C_{\rm NH_3} / \Delta C_{\rm CH_4}$ enhancement ratio in each season. The black lines represent the temperature dependence of the ammonia volatilization process and are scaled by a multiplicative factor A_0 for each season.

Eilerman et al., ES&T, 2016

NH_x deposition at Logan (NADP)

NH₃ concentration at Logan (AMoN)

Biomass Burning Sources of NH₃

Bray et al., Atm Env, 2018

Biomass Burning Sources of NH₃

	High-T	Low-T		High-T	Low-T
Hydrocarbons	0.223	0.105	N-containing	0.067	0.196
Oxygenates (number of oxygen : n)			N and O-containing	0.119	0.019
🔲 <i>n</i> = 1	0.386	0.359	S-containing	0.001	0.001
n = 2	0.190	0.270	Others	0.000	0.000
m = 3	0.014	0.041			
■ <i>n</i> ≥ 4	0.001	0.008			

Sekimoto et al., ACP, 2018

Mobile Sources of NH₃

Can be diagnosed through emission ratios with CO, CO_2 , NO_x

Gasoline vs diesel?

Differences in emission ratios during winter operating conditions?

Sun et al., ES&T, 2016

Key Questions

- How does the sensitivity of PM_{2.5} to NH₃ vary
 - spatially across the western U.S. in winter?
 - through time over the course of an extreme episode?

Requires: extensive (ground-based, aircraft, satellite), high-time resolution (hourly or better) measurements of NH₃ and $p-NH_4^+$ (plus HNO₃ and other PM_{2.5} chemistry)

 What are the emissions of NH₃ for each sector and how do they vary seasonally?

Requires: extensive (ground-based, aircraft, satellite), high-time resolution (hourly or better) measurements of NH₃ and $p-NH_4^+$ (plus co-emitted species CO, CO₂, CH₄...)

NH₃ concentration at SLC (AMoN)

