I. Background

Tropospheric ozone (O₃) is a pollutant with major impacts on human health, including:
- Difficulty breathing
- Inflammation and damage of the lungs
- Aggravation of asthma and bronchitis

Salt Lake City sees frequent unhealthy summer O₃.

O₃ production depends on complex reactions involving NOₓ and VOCs.
- NOₓ is emitted from combustion, fossil fuels
- VOCs are emitted from vegetation, solvents, industry, cows, etc.

Halogens further complicate these reactions.
- Halogens are released from sea spray, industry, salts

Halogens can cause...
- Catalytic loss (O₃)
- Increased atmospheric oxidizing capacity (O₂, O₃)
- Increased NOₓ (O₃)

Salt Lake City is uniquely located near a major halogen point source.

II. Measurements

- Hawthorne Elementary DEQ site
- Gas concentration and meteorological data
- Data from 06/01/2021 – 08/31/2021 and 06/01/2022 – 08/31/2022
- Number weighted median hourly summer values
- TUV (Tropospheric Ultraviolet and Visible Radiation) Model
- Photolysis rates

III. Methodology

Framework for 0-D Atmospheric Modeling (F0AM)

- Explicit box model with >15,000 reactions
- MCMv331 (Master Chemical Mechanism), Riedel et al., 2014 halogen submechanism
- We ran 86 hours (4 days) of “spinups” to model unconstrained species, spinup outputs act as run inputs
- Meteorological and solar parameters are input as measured
- All constrained species are held constant throughout spinups
- On a run, NOₓ, halogens, and O₃ evolve
- Isoprene NOₓ and VOC concentrations are calculated by multiplying each gas’s fraction of the total family with the intended family concentration, meaning speciation is as measured throughout the isoplates

IV. Results

VOC Speciation

O₃ Speciation

O₃ Isoplates

Change in Pbpb

Percent Change

IV. Future Work

- Improve constraints on halogens and VOCs
- Our halogen concentrations are estimates, accurate concentrations and speciation of Salt Lake City halogens are not currently known
- Many VOCs are unmeasured, although we spin them up, more extensive measurements are needed to accurately represent VOC speciation

What is the role of halogens in the O₃ cycle?
Inclusion of bromine and iodine chemistry

IV. Acknowledgements

This research was made possible by the University of Utah REALM REU, funded by the National Science Foundation award #1851943
Hawthorne Elementary data taken and provided by the Utah Department of Environmental Quality
Thank you to Randal Martín and Gerardo Carrillo–Cardenas for their help estimating Salt Lake City halogen and aerosol concentrations

Understanding the Impact of Halogens on Summer Tropospheric Ozone

Sylvie Shaya¹, Jessica Haskins²

¹Wellesley College, Department of Physics; ²University of Utah, Department of Atmospheric Sciences

V. Sensitivity Analysis

Model runs near measured values
- VOCs at 0.5- and 2-times Salt Lake City values
- Runs with and without halogens, high halogen runs with 2-times Salt Lake City estimates
O₃ concentrations, oxidant concentrations, and halogen reaction distributions respond to changes in halogens and VOCs

O₃ Timeseries

Chlorine Compound Distribution

Oxidant Production Rates

Change in Total Oxidants

Reactive Cl₂ Production and Loss Rates by VOC Level

IV. Sensitivity Analysis

Model runs near measured values
- VOCs at 0.5- and 2-times Salt Lake City values
- Runs with and without halogens, high halogen runs with 2-times Salt Lake City estimates
O₃ concentrations, oxidant concentrations, and halogen reaction distributions respond to changes in halogens and VOCs