S302 - Large spatial and temporal science
studies

Block 1: 15:00 - 15:55, "Setting the Table”

15:00 - 15:10 ARM Large-Scale Science (Chongai Kuang)

15:10 - 15:15 Multi-scale Temporal Analysis (Jim Smith)

15:15 - 15:25 Surface-through-Vertical Observational Analysis (Maria Zawadowicz)
15:25 - 15:35 Multi-scale Spatio-Temporal Modeling Analysis (Allison Steiner, virtual)
15:35 - 15:45 Aerosol Vertical Profile Data Products (Peng Wu, virtual)

15:45 - 15:55 UAS-enabled Aerosol Science (Beat Schmid, virtual)

Block 2. 15:55 - 16:30, Discussion Highlights

develop/deploy sampling “nodes/pods” for “path-finding”/pre-deployment activities
Al/ML-accelerated modeling for pre-deployment (siting/sampling), and during-
deployment (forecast) activities

coordinate NEON/AOP, NOAA, NASA for targeted PBL studies

spatial AND temporal variability can/must help drive/organize I0Ps



Studying the PBL via a multi-scale,
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ModEx 2.0: Optimal experimental design (site selection)

« Of two proposed new site locations (A and B), which should we choose?
« Select the location whose data, if measured, reduces model uncertainty the most

Data-model
calibration
(ModEx 1.0)
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A Novel Computational Framework for Model-Measurement Integration for Climate Prediction”

Optimal Experimental Design
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Seasonal measurements are essential for understanding biosphere-

atmosphere interactions!

Fraction of days with new particle formation during SAIL
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Local SOA simulations (1D model) to constrain regional

contributions

courtesy of Allison Steiner

e 2013 simulations of gas-phase biogenic VOC (left panel) and secondary organic
aerosol (right panel) at SOAS site
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Linking AOS-measured aerosol
properties to boundary layer clouds \

+ Goal is to identify conditions in which AOS- % /
measured aerosol is representative of the \ /
boundary layer CCN. \ K

» For now, we analyze SGP data collected in 2019. \ )

» This will enable comparisons between cloud- \ /
processed and not cloud-processed particle \ K
populations. Chemical sighatures of aqueous . \ /
processing \ ,

* A lot of this was done by University of Oklahoma \ i
students, under a new collaboration between our j
group and ARM DQO. =

* Reese Mischler (2023)

» Tristen Anderson, Lucas Bush and Dan
Moak (2024)

Huge thanks to Ken Kehoe and Alyssa

courtesy of Maria
Zawadowicz
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Planned work — aerosol microphysics

» Aerosol properties near the surface, such as aerosol
number concentration and size can be significantly
different from those aloft. This is especially true when
there are new particle formation events

» We are working with Rich Ferrare and team at NASA
LaRC on the retrieval algorithm

> Required inputs are in }3355, 3532, ;31(}54, 355, and dX532
profiles from RL and HSRL (“38 + 2a” method)

» Test the code at the SGP site and plan to apply to BNF

Thank you!

Questions and comments are welcome:
Peng Wu (peng.wu@pnnl.gov)
Damao Zhang (damao.zhang@pnnl.gov)

orofiles

courtesy of Peng Wu
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