UNIVERSITY OF UTAH

UNIVERSITY OF Lincoln

- safety.
- gradients (OPGs) for the entire Western CONUS?
- with less available training data?

- **Global Historical** Daily: 1979–2018
- Global 30 Arc-Second Elevation (GTOP30);

ECMWF ERA5 at 0.5° Grid-Spacing

Variables	Levels
E/W Winds	700 hPa
N/S Winds	700 hPa
Specific Humidity	700 hPa
Temperature	700 hPa
Geopotential Height	500 hPa
Integrated Vapor Transport	All Levels

- Rockies region.
- CONUS model.

Development of a Convolutional Neural Network to Predict Orographic Precipitation Gradients of the Western CONUS

Anna James¹, Savanna Wolvin², Courtenay Strong² Department of Atmospheric Sciences, ¹University of Nebraska-Lincoln, ²University of Utah

2 Methods

- Train the model 3 times
- I. Mean squared error (MSE)
- 2. Custom loss
- 3. MSE again
- . Train the model once with a combined loss function (MSE and custom)

Result

- Both methods decreased OPG prediction accuracy
- However, the custom loss was minimized (correlation decreased, absolute difference increased)

Summary

- **Goal:** utilize correlation or difference between nearby facets to improve prediction of facets with less data available Surprisingly, model predicts
- too much correlation
- Penalizing the model for having too much correlation just creates random heterogeneity that decreases OPG prediction accuracy