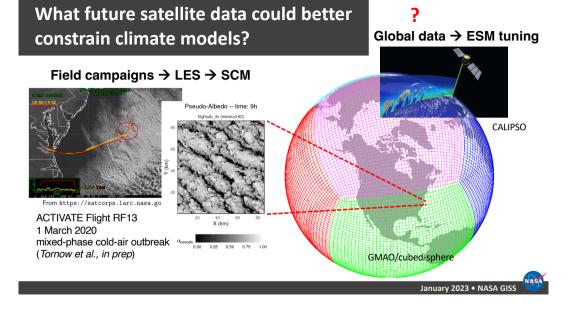


Notes from NASA–GISS workshop on designing observations for climate applications

Johannes Mülmenstädt (opinions are the speaker's own)

July 9, 2024

PNNL is operated by Battelle for the U.S. Department of Energy


Slides excerpted from Ann Fridlind's NASA workshop intro

A Strategy for Improved Planning of Earth Observations from Space: Earth System Model Development Observational Constraint (OC) Studies

> Ann Fridlind, Natassa Romanou, George Tselioudis, Clara Orbe, Alex Ruane, Gavin Schmidt NASA Goddard Institute for Space Studies

as presented to David Considine, Tsengdar Lee, Hongbin Yu, and Qing Liang on 2/17/23

Workshop on the Use of Climate Models in Satellite Mission Design Meeting Agenda

Monday, June 10 / 9-5:30ET

Session 1 — Introductions

Gavin Schmidt — Welcome to GISS and Institute Orientation Ann Fridlind and George Tseldioudis — Workshop Motivation, Strategy, Goals Everyone — Round Table Self-Introductions

Session 2 — NASA Decadal Survey Mission Incubation

Amber Emory — Road Map to Decadal Survey Mission Development Ann Fridlind — A GISS Modeler's-Eye View of the DS, TRL, ESTO, SATM, Value Framework and Costing Practices, and Community Support

Session 3 — OSSE Applications

Fanglin Yang — OSSE Applications at NOAA: A Data Assimilation Modeling Framework Derek Posselt — OSSE Applications at JPL: Testing Sampling and Retrievals in a Bayesian Framework

Greg Elsaesser — GISS ModelE3's Calibrated Physics Ensemble (CPE) as an OSSE Foundation

Marcus van Lier-Walqui — First Results of a Proof-of-Concept Climate OSSE for PBL Target Observables

Discussion — Q&A, Other Climate OSSE Approaches?

Tuesday, June 11 / 9-5:30ET

Session 4 — OSSE Considerations

Greg Cesana — Relationship of CPE Members to Cloud Feedback and Climate Sensitivity Johannes Mülmenstädt — Relationship of Climate Model Processes to Cloud Feedbacks Lazaros Oreopoulos — Observation-Model Sample Matching in GEOS5 George Tselioudis — Metrics for Operational Climate Modeling Discussion — OSSE Capabilities and Limitations

Session 5 — Earth Observation Planning Context

Matt Lebsock — NASA PBL Incubation Mission Report Dan Miller — NASA AOS Mission Report Brian Cairns — NASA PACE Mission Report Ryan Kramer — KISS Study Report Betsy Weatherhead — WMO-BIPM Report and Designing the Earth Observing System of the Future

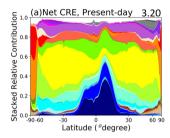
Discussion — Designing Observations for Climate Applications

Wednesday, June 12 / 9-12ET

Session 6 — Summary and Outlook

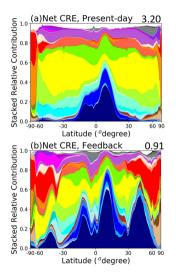
Workshop Outcomes Publication Planning: Strawman Outline Town Hall and Other Follow-On Possibilities

What kind of questions would ESM OCs answer?


- Mission design process
 - what coverage and dynamic range is optimal for climate model constraint?
 - what are optimal temporal, spatial, or spectral resolution?
 - how are observational data streams related to capabilities to answer leading mission science questions?
 - enable evaluation of added value of mission design investments
 - quantify and demonstrate observation-to-parameter constraint pipeline
- How to implement
 - use more than one US climate model for each study
 - studies must be embedded with each Decadal Survey mission lifetime

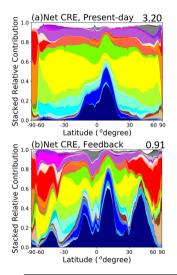
Things I took away from the discussion

Main message: To constrain climate response with observations, we need to systematically identify which observations provide a constraint.


State and sensitivity

ŝ	ent_fac_dp ent_fac_md amdet_fac r det	ŝ	orog_drag_param g0_rp a ent 1	ŝ	c_r_correl m_ci ai	ł	ps_acc_cor_scav param_cloud_hplus ps_natl_dms_emiss
	cca_md_knob		zhloc depth fac		xlr		u10 max coare
	cca_sh_knob		par_mezcla		ar	10	r0
	mparwtr		dec_thres_cloud		mp_dz_scal		rho_snow_fresh
	qlmin		forced_cu_fac				tupp_io
					ps_anth_so2_emiss		f0_io
	gwd_frc		dbsdtbs_turb_0		ps_dry_depvel_so2		dz0v_dh_io
	fbcd		two_d_fsd_factor		ps_sigma_updraught		nl0_io
	gwd_fsat		dp_corr_strat	10.	biom_aer_ems_scaling		rootd_ft_io
2	gsharp nsigma		ice_width	1	ps_natl_ss_emiss	•	psm

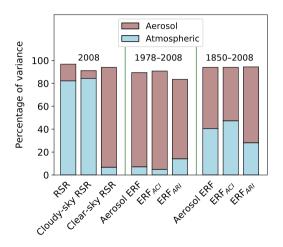
Tsushima et al. (2020); Regayre et al. (2018); Lee et al. (2016); von Bertalanffy (1950)


State and sensitivity

t.	ent_fac_dp ent fac md	•	orog_drag_param		c r correl	2	ps_acc_cor_scav param_cloud_hplus
•	amdet fac		g0 rp		m_ci		ps_natl_dms_emiss
	r det		a_ent_1		ai		
	cca_md_knob		zhloc depth fac		xlr		u10 max coare
	cca_sh_knob		par_mezcla		ar		r0
	mparwtr		dec thres cloud		mp_dz_scal		rho_snow_fresh
	glmin		forced_cu_fac				tupp_io
					ps_anth_so2_emiss		f0_io
	gwd_frc		dbsdtbs_turb_0		ps_dry_depvel_so2		dz0v_dh_io
	fbcd		two_d_fsd_factor		ps_sigma_updraught		nl0_io
	gwd_fsat		dp_corr_strat	10	biom_aer_ems_scaling		rootd_ft_io
	gsharp		ice_width		ps_natl_ss_emiss		psm
	nsigma		-				

Tsushima et al. (2020); Regayre et al. (2018); Lee et al. (2016); von Bertalanffy (1950)

State and sensitivity



ent_fac_dp	orog_drag_param				ps_acc_cor_scav
ent_fac_md			c_r_correl		param_cloud_hplus
amdet_fac	g0_rp		m_ci		ps_natl_dms_emiss
r_det	a_ent_1		ai		
cca_md_knob	zhloc_depth_fac		xlr		u10_max_coare
cca_sh_knob	par_mezcla		ar	11	r0
mparwtr	dec_thres_cloud		mp_dz_scal		rho_snow_fresh
qlmin	forced_cu_fac				tupp_io
			ps_anth_so2_emiss		f0_io
gwd_frc	dbsdtbs_turb_0		ps_dry_depvel_so2		dz0v_dh_io
fbcd	two_d_fsd_factor		ps_sigma_updraught		nl0_io
gwd_fsat	dp_corr_strat	10.	biom_aer_ems_scaling		rootd_ft_io
gsharp	ice_width		ps_natl_ss_emiss		psm
neigma					

- 1. Cloud state and cloud feedbacks are fundamentally controlled by different model parameters
- Models are a tangle of compensating process errors can be combined in different ways to give a similar state, but all have different sensitivities to perturbations – equifinality
- 3. Constraining cloud state (e.g., CRE, SLF) is likely not enough to constrain the feedback

Tsushima et al. (2020); Regayre et al. (2018); Lee et al. (2016); von Bertalanffy (1950)

State and sensitivity, clouds and aerosols

- Both cloud and aerosol parameters contribute to clear-sky and cloudy-sky radiative fluxes
- ... differently for base state and for anthropogenic forcing!

Tsushima et al. (2020); Regayre et al. (2018); Lee et al. (2016); von Bertalanffy (1950)

Corollary: constraining base climate may require different observations than constraining perturbed climate

What does this mean for AMSG?

- Global modeling community can provide essential input into design of observations (where, when, what?)
- Climate OSSEs as an objective and quantitative way to evaluate AMF proposals?

What does this mean for AMSG?

- Global modeling community can provide essential input into design of observations (where, when, what?)
- Climate OSSEs as an objective and quantitative way to evaluate AMF proposals?
- Can't ask every proposal to design and execute a global model PPE!

What does this mean for AMSG?

- Global modeling community can provide essential input into design of observations (where, when, what?)
- Climate OSSEs as an objective and quantitative way to evaluate AMF proposals?
- Can't ask every proposal to design and execute a global model PPE!
- But can the global modeling, process modeling, and observations communities come together to provide this capability?

- Lee, L. A., C. L. Reddington, and K. S. Carslaw, 2016: On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc. Nat. Acad. Sci. USA, 113 (21), 5820–5827. doi:10.1073/pnas.1507050113.
- Regayre, L. A., J. S. Johnson, M. Yoshioka, K. J. Pringle, D. M. H. Sexton, B. B. Booth, L. A. Lee, N. Bellouin, and K. S. Carslaw, 2018: Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol erf. Atmos. Chem. Phys., 18 (13), 9975–10006. doi:10.5194/acp-18-9975-2018.
- Tsushima, Y., M. A. Ringer, G. M. Martin, J. W. Rostron, and D. M. H. Sexton, 2020: Investigating physical constraints on climate feedbacks using a perturbed parameter ensemble. Clim. Dynam., 55 (5-6), 1159–1185. doi:10.1007/s00382-020-05318-y.

von Bertalanffy, L., 1950: The theory of open systems in physics and biology. Science, 111 (2872), 23-29. doi:10.1126/science.111.2872.23.